If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5c^2+2c-8=0
a = 5; b = 2; c = -8;
Δ = b2-4ac
Δ = 22-4·5·(-8)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{41}}{2*5}=\frac{-2-2\sqrt{41}}{10} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{41}}{2*5}=\frac{-2+2\sqrt{41}}{10} $
| 15-4a+4=27 | | 12/m-3=4 | | 4x+3-(x-1)+5=(5x+7) | | 22x-13+7-2=14 | | 15-4(a-1)=27 | | (8x-4)(3+6x)=0 | | 3(2x-1)=2x+1-4(2-x) | | 4(2x-4)+x=-(1-6x) | | 3x-5+2x=1+7x | | X-9=x×3-8 | | 8x^2+80x+96=0 | | -5(4x+3)+3=-12(x-3) | | d)24/X=4 | | 9.6x=7x+12 | | (x*3)/3=5*3 | | 3x+3=5x+20 | | 3x+17=2x+5 | | (x−1)(x+3)=16+(x−3)(x+1) | | 6b+3=-3b | | 5(3x-12)=3(x-3) | | 18x-x-7x+5x=14-x+3+2x | | 7*2.605551275=15/x | | x*7*2.605551275=15 | | (2x-1)^2-2x+1=0 | | -15=m-19 | | x^2−10x−39=0 | | x2−10x−39=0 | | 4x-1+2x-5=90 | | 15-p=23 | | 2(150-x)+0.5x-195=0 | | 2x=2x-100 | | 2y+((150-y)/2)-195=0 |